Specificity of the methylation-suppressed A isoform of candidate tumor suppressor RASSF1 for microtubule hyperstabilization is determined by cell death inducer C19ORF5.

نویسندگان

  • Leyuan Liu
  • Amy Vo
  • Wallace L McKeehan
چکیده

Isoform-specific epigenetic silencing of RASSF1A (3p21.3) by promoter-specific CpG island hypermethylation occurs at high frequency in human tumors, whereas the closely related product of the same gene, RASSF1C, continues to be expressed. Both isoforms in isolation exhibit tumor suppressor properties and we show here similar cellular locations on mitochondria and microtubules, paclitaxel-like microtubule hyperstabilization, disruption of mitosis, and interaction with C19ORF5. We show both have identical but distinct sequence domains for microtubule association and hyperstabilization. C19ORF5 is a hyperstabilized microtubule-specific binding protein of which accumulation causes mitochondrial aggregation and cell death. We report herein that when A or C isoforms of RASSF1 are coexpressed with C19ORF5, the unique N-terminal sequence of RASSF1C prevents it from hyperstabilizing microtubules. This confers specificity on RASSF1A in microtubule hyperstabilization and accumulation of C19ORF5 on microtubules and could underlie a specific effect of hypermethylation-suppressed RASSF1A in tumor suppression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction.

C19ORF5 is a sequence homologue of microtubule-associated proteins MAP1A/MAP1B of unknown function, except for its association with mitochondria-associated proteins and the paclitaxel-like microtubule stabilizer and candidate tumor suppressor RASSF1A. Here, we show that when overexpressed in mammalian cells the recombinant 393-amino acid residue COOH terminus of C19ORF5 (C19ORF5C) exhibited fou...

متن کامل

Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma

Background & Objective: Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an ex...

متن کامل

RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics.

The candidate tumor suppressor gene RASSF1A is inactivated in many types of adult and childhood cancers. However, the mechanisms by which RASSF1A exerts its tumor suppressive functions have yet to be elucidated. To this end, we performed a yeast two-hybrid screen to identify novel RASSF1A-interacting proteins in a human brain cDNA library. Seventy percent of interacting clones had homology to m...

متن کامل

DNA methylation of tumor suppressor genes in hepatocellular carcinoma

The basic unit of chromatin is a nucleosome included an octamer of the four core histones and 147 base pairs of DNA. Posttranslational histones modifications affect chromatin structure resulting in gene expression changes. CpG islands hypermethylation within the gene promoter regions and the deacetylation of histone proteins are the most common epigenetic modifications. The aberrant patterns of...

متن کامل

E-cadherin Promoter Methylation Comparison and Correlation with the Pathological Features of the Squamous Cell Carcinoma of Esophagus in the High Risk Region

E-cadherin is among tumor suppressor genes which mostly subjects to the down-regulation in squamous cell carcinoma of esophagus (SCCE). The gene is tightly associated with the tumor invasion and metastasis in multiple human cancers, especially SCCE. CpG islands’ methylation in the promoter region of E-cadherin is among the mechanisms that have been suggested for the E-cadherin silencing, howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 2005